

Allinea DDT: Your Partner in Finding
Debugged Paths on Mira

Ian Lumb <ilumb@allinea.com>
Senior Systems Engineer, Allinea Software Inc.

Mira Community Conference 2013

[L2P] Summary

● Petascaling for > 1 year
● Petascaled infrastructure and UI

● Scaling for IBM Blue Gene /P
● Acceptance testing at ALCF

● Scaling for IBM Blue Gene /Q
● Addressing ALCF requirements

– Early access for IBM Blue Gene /Q
expected July 2012

● Architecture applicable elsewhere
● Multicore/GPU??? architectures

● Exascaling ...

http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/L2PAllinea_0.pdf

http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/L2PAllinea_0.pdf

A Path to Petascale on IBM BG /P

● Phase 1 [2010]
● Cut memory usage per compute process at I/O

node
● Debuggers share common internal tables

– Memory mapping of symbol tables
– Raises limit to ~128 processes

● Delivered!

The memory mapped result

● Simplest to achieve – with
benefits to multicore
systems

● Boosted max cores per I/O
node to 256

● Reached 32K cores

● 32,000 cores as quick as 64
cores

● … flat – but not
instantaneous

● Most operations ~ 3
seconds

● Close work with ANL – ran
at scale on Intrepid

64 128 256 512 4096 8192 16384 32768

0

1

2

3

4

5

6

7

BG/P Measured Performance

SMP Mode

Step Step and variables Compare

Cores

S
e

co
n

d
s

Petascale IBM Blue Gene /P
Debugging

● Phase 2 [2011]
● Reduce per-I/O-node daemon count
● Reduces context thrashing: faster!
● Each daemon handles multiple compute processes

– Multiplexing commands and responses via CIOD
– Multiplexing within the debugger
– Cuts memory usage and improves speed

● Limit 256-512 processes per I/O node

● Delivery: July 2012

M
u

lt
ip

le
xe

d
 A

rc
h

it
ec

tu
re

BG /P Case Study: Background

● Outstanding problems in heliospheric physics
● Origin of the solar wind
● Heating of the solar corona

● Large-scale numerical simulations
● Simulation crashes at 16,386 MPI processes

Why debug at scale?

● Increasing job sizes leads to unanticipated errors
● Regular bugs

– Logic issues and control flow
– Data issues from larger data sets – eg. garbage in..., overflow

● Increasing probability of independent random error
– Memory errors/exhaustion – “random” bugs!
– System problems – MPI and operating system

● Coded boundaries
– Algorithmic (performance) or hard-wired limits (“magic numbers”)

● Unknown unknowns

● Machine time is too expensive to ignore failures!

BG /P Case Study: Debugging Process

● Reproduced the crash
● Ran Allinea DDT in offline mode

– Viewed HTML results via Web browser
● Crash inside an MPI function call on about 128 of the 16384 cores

– MPI implementation bug?
– Memory bug?

● Ran Allinea DDT in offline mode again
● Memory debugging enabled

– Crash inside a harmless looking loop
● Issue with loop index

● Ran Allinea DDT in GUI mode
● Early calculation of the X-Y-Z grid is incorrect

TRAFFIC

● Debugging
● Transforming a broken program into a working one

● How?
● Track the problem
● Reproduce
● Automate - (and simplify) the test case
● Find origins – where could the “infection” be from?
● Focus – examine the origins
● Isolate – narrow down the origins
● Correct – fix and verify the testcase is successful

Zeller A., “Why Programs Fail”, 2nd Edition, 2009

http://www.allinea.com/ddt-download/

Allinea DDT 3.2.1 – October 2012

http://www.allinea.com/ddt-download/

Learn. Be Inspired. Find a Path.

Allinea DDT and Mira

“This tool has already proven its value in the migration of
our early science applications onto Mira,” said Kalyan
Kumaran, who manages ALCF’s applications
performance engineering team. “These projects cover
the range of scientific fields, numerical methods,
programming models and computational approaches
expected to run on Mira, so accurate debugging is
critical.”

http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/2013MiraCon_debugging_0.pdf

http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/2013MiraCon_debugging_0.pdf

Fixing the everyday crash

● The typical application crash or early
exit:
● Run your program in the debugger

 ddt {application} {parameters}
● Application crashes or starts to exit

● Where did it happen?
● Allinea DDT merges stacks from

processes and threads into a tree
● Leaps to source automatically

● Why did it happen?
● Some faults evident instantly
● For others look deeper – at variables

Allinea DDT: Proved to the extreme

● Scalability by design
● User interface that scales
● High performance tree

architecture

● Proven performance at
Petascale
● Measured in milliseconds
● Routine use at 100,000+ cores

● 300,000+ cores
● Easy to use
● Scalable GUI

Allinea DDT: More than debugger

● Integrated automated
detection of bugs
● Static analysis
● Memory leaks and errors

● Open plugin architecture
● MPI checking tools

● Offline mode - debug in
batch mode

Allinea DDT - Debugging++

● Productively debug your parallel code
● Completely understand your parallel code

● Interact with data, algorithms, codes, programs and
applications in real time

● Develop parallel your code from scratch
● Port parallel algorithms, codes, programs and

applications to X
● Scale your algorithms, codes, programs and

applications

What's really new?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

